| DEPARTMENT: SCIENCE | COURSE TITLE: CHEMISTRY | | | |---------------------|------------------------------------|--|--| | | COURSE NUMBER: 234 | | | | GRADE(S): 11 | PRE-REQUISITES (IF ANY): ALGEBRA I | | | | UNIT | LENGTH | CONTENT | SKILLS | METHODS OF ASSESSMENT | FRAMEWORK STRAND(S) & STANDARD(S) | |------------------------------------|---------|--|--|---|---| | Introduction and Nuclear Chemistry | 45 Days | Lab safety Metric measurement Density Structure of atom Periodicity Activity series Molar conversions Radiation Nuclear reactions Nuclear power Atomic weapons Commercial uses of radiation | Students will: Demonstrate and/or explain proper use of safety stations. Use metric system to measure length, volume and mass. Convert between English and metric as well as within metric units. Calculate and predict density of different materials. Explain the structure of an atom and differentiate between elements. Predict the behavior of elements based on arrangement in the periodic table. Perform molar conversions. Compare and contrast the four basic types of radiation. Manipulate and solve nuclear equations. Explain the structure and function of a nuclear power plant. Explain the structure and "function" of nuclear weapons. Discuss various commercial uses of radiation. | Unit exams Essays Measurement lab Density lab Periodicity lab Intro to graphing with Excel Area graphing lab Density and the nucleus lab Daily homework Quizzes Essay on video Activity series lab Cooperative research and presentations | Inquiry LS 1-11
Domain LS 1-3,6
Sci-Tech and
Human affairs
LS 1-4 | | Natural Resources | 45 days | Valence Electromagnetic radiation Ionic vs. covalent bonding Diatomic elements Lewis structures Molecular formulas Monatomic ions Polyatomic ions Naming ionic compounds Percent composition Determing simple and molecular formulas Balancing chemical equations Stoichiometry Distillation of crude oil | Students will: Use valence electrons to determine oxidation states and write chemical formulas. Explain the relationship between energy and atomic spectra. Draw and build representations of molecules. Determine names of compounds from formulas. Calculate percent composition. Calculate simple and molecular formulas. Balance chemical equations. Calculate the unknown masses of reactants and products. Explain the process of crude oil distillation. Give examples of U.S. dependence on petroleum products. Explain the process of recycling plastics. | Unit exam Percent composition lab Stoichiometry lab Electromagnetic spectrum lab Quizzes Daily homework Cooperative research and presentations Model building lab | Inquiry LS
1,2,3,5,6,7,8,
9,10,11
Domains LS
1,2,3,4,8,17,
19
Sci-Tech and
Human Affairs
LS 1-4 | | | 45.0 | Petro chemicals and society Plastic recycling Refining iron Importance of metals to U.S. society Recycling metals | Explain how iron is refined. Give examples of U.S. dependence on metals. Explain the process of recycling metals. | | | |---------------------|---------|--|--|--|--| | The Atmosphere | 45 Days | Molecular motion Relationships between pressure, temperature and volume of gases Barometers and pressure units Molar volume and Avogadro's Principle General and ideal gas law Greenhouse effect Natural and industrial sources of CO₂ Ozone and the stratosphere CFC's | Students will: Use molecular motion principles to explain pneumatic phenomenon. Explain qualitatively and quantitatively the relationships between temperature, volume and pressure of gases. Explain the construction and function of a barometer. Calculate molar volumes of gases using Avogadro's Principle. Use the general and ideal gas laws to solve for unknowns. Explain global warming and the factors contributing to it. Explain ozone depletion and the contributing factors. | Unit exam Absolute zero lab Molar volume lab Sources of CO₂ lab Quizzes Daily homework Group research and presentations | Inquiry LS
1,2,3,4,5,6,7,
8,9,10,11
Domains LS
3,4,
Sci-tech and
Human Affairs
1-4 | | Water and Solutions | 45 Days | Changes of state Heating and cooling curves Solubility Concentration and molarity Freezing point depression and boiling point elevation Acids and bases; pH,pOH, titration Formation of nitrogen and sulfur oxides Formation of acid rain Biological effects of acid rain Politics of acid rain | Explain changes of state according to the Kinetic Molecular Theory. Construct and explain heating and cooing curves. Predict solubility of given compounds. Interpret solubility graphs. Calculate unknown concentrations of solute, solvent and solutions. Calculate freezing and boiling points for various electrolytes and non-electrolytes. Explain pH, pOH and the relationship between [H+] and [OH-] of strong acids and bases. Interpret equations for the formation of nitrogen and sulfur oxides. Interpret equations for the formation of acid rain. Understand the structure of clay minerals, cation exchange and aluminum toxicity. Explain the conflict between coal burning regions of the U.S. and those that get dumped on. | Unit exam Heating and cooling curve lab Solubility labs (2) Boiling points lab Polarity lab Concentration of solutions lab Titration of unknown acid lab Antacid lab Quizzes Daily homework Group research and presentations | Inquiry LS
1,2,3,4,5,6,7,
8,9,10,11
Domains LS
3, 4,10,17,19
Sci-tech and
Human Affairs
1-4 |