DEPARTMENT: SCIENCE	COURSE TITLE: BIOLOGY
	COURSE NUMBER: 222
GRADE(S): 10	PRE-REQUISITES (IF ANY): NONE

UNIT	LENGTH	CONTENT	SKILLS	METHODS OF ASSESSMENT	FRAMEWORK STRAND(S) & STANDARD(S)
Introduction	20 days	 Definition of life Microscopy Measurement Descriptive chemistry 	 Students will: Formulate and write a clear definition of life based on observation and discussion Understand proper care and use of microscopes and microscope techniques Use metric system to measure length in macro and micro worlds Construct and interpret chemical formulas and models. 	 Unit exam Microscope labs Enzyme lab Daily homework Notebook Essay Molecular model building 	Inquiry LS 1,6,7,9 Domains LS 4, 11, 16, 17
The Cell	25 days	 Cell theory Eukaryotic versus prokaryotic cells Cell organelles Plants and animals Membranes Transport 	 Students will: Demonstrate understanding of use of microscopes and techniques. Measuring correctly. Make volume and surface area calculations Identify organelles. Make drawings. Gather, organize, and interpret data. 	 Unit exam Microscope labs: cell types, size comparison lab, diffusion rate lab, osmosis lab Daily homework Notebook 	Inquiry LS 1, 2, 6, 7, 9 Domains LS 1, 2, 3, 4, 7, 17
Digestion	20 days	 Multicellular organization Nutrients Mechanical versus chemical digestion Human digestion 	 Students will: Measure/calculate number of cells in human body. Use correct dissection techniques. Do extensive essay writing. Conduct literature research on digestive system and comparative systems. 	 Unit exam Notebook Earthworm dissection Problem solving take home exercise Booklet Daily homework 	Inquiry LS 1, 2, 7, 8, 9, 10 Domains LS 1, 2, 3, 4, 17
Circulation, Respiration, and Excretion	20 days	 Function of a circulatory system Parts and functions of human circulatory system Blood, its components and function Function of a respiratory system 	 Students will: Demonstrate correct microscope use. Perform measurement and calculation. 	 Unit exam Notebook Daily homework Circulation lab Respiration lab 	Inquiry LS 6, 7, 8, 9, 11 Domains LS 1, 2, 3, 17

		 Parts and functions of the human respiratory system Function of an excretory system Parts and functions of the human excretory system 	Process data.Construct graphs.	Microscope lab (lung and kidney)
Ecology	20 days	 Photosynthesis and respiration ATP Food webs Components of the Biosphere 	 Students will: Interpret chemical equations. Analyze trophic levels and construct food webs. Calculate energy flow through ecosystems. 	 Unit exam Daily homework Field experience Construction of food web Labs: photosynthesis and solar energy, cell respiration Inquiry LS 1, 2, 6, 7, 8, 9, 11 Domains LS 14, 15, 16, 17
Evolution and Classification	15 days	 Spontaneous generation Scientific method Definition of species and evolution Evidence for evolution Natural selection Taxonomy 	 Students will: Use the scientific method including interpretation of experimental results. Interpret evidence. Distinguish Darwinian and Lamarckian evolution. Construct graphs. Construct dichotomous keys. Demonstrate understanding of the logic of classification. 	 Unit exam Notebook Daily homework Written key Oral presentation
Reproduction	20 days	 Mitosis Meiosis Gametogenesis Fertilization Human reproductive organs Development Frog dissection 	 Students will: Use microscopes correctly. Extrapolate data from observed specimens. Understand genetic (chromosomal) continuity of life. Use correct dissection techniques. Draw from specimens. 	 Unit exam Daily homework Notebook Labs: mitotic figures Extensive dissection lab
Introduction to Genetics	25 days	 Traits Heredity Mendelian Genetics Dyhybrid cross Incomplete dominabce Codominance Multiple alleles Sex linkage 	 Students will: Analyze Punnett squares probability. Predict offspring of crosses. Perform calculations using ratios. Develop and use a general genetics vocabulary. Understand genetics laws (independent assortment, segregation). 	 Unit exam Daily homework Notebook Multiple problem solving sessions Human face lab

			• Construct a human face from multiple independent traits.		
Modern Genetics	15 days	 DNA and RNA Replication Transcription Translation Mutation Evolution 	 Students will: Analyze structure of DNA and RNA. Build models. Demonstrate familiarity with the genetic code. Understand protein synthesis. Understand mutation as source of variation acted upon by natural selection. Understand DNA and the flow of life. 	 Unit exam Daily homework Illustration Modeling labs 	Inquiry LS 7 Domains LS 1,2,4,5,6,7,8,9, 10, 11